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• Exam duration.  The exam is scheduled to last two hours. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the content in the source for your justification.  You could 

reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

Problem Point Value Your Score Topic 

1 18  Continuous-Time System Properties 

2 18  Discrete-Time Convolution 

3 16  Continuous-Time Filter Design 

4 18  Discrete-Time Filter Design 

5 16  Continuous-Time Sinusoidal Amplitude Modulation 

6 14  Discrete-Time Mystery Systems 

Total 100   

  



Problem 1. Continuous-Time System Properties.  18 points 

Each continuous-time system has input 𝑥(𝑡) and output 𝑦(𝑡), and 𝑥(𝑡) and 𝑦(𝑡) might be complex-

valued. 

Determine if each system is linear or nonlinear, time-invariant or time-varying, and bounded-input 

bounded-output (BIBO) stable or unstable. 

You must either prove that the system property holds in the case of linearity, time-invariance, or stability, 

or provide a counter-example that the property does not hold.  Providing an answer without any 

justification will earn 0 points. 

Part System Name System Formula Linear? Time-

Invariant? 

BIBO 

Stable? 

(a) Gain 𝑦(𝑡) = 𝐴 𝑥(𝑡) 

for − ∞ < 𝑡 < ∞ 

𝐴 is a finite constant. 

   

(b) Tangent 𝑦(𝑡) = tan( 𝑥(𝑡) ) 

for − ∞ < 𝑡 < ∞ 

 

 

 

  

(c) Scale time axis 𝑦(𝑡) = 𝑥(2 𝑡)  

for − ∞ < 𝑡 < ∞ 

 

 

 

  

 

(a) Gain:  𝑦(𝑡) = 𝑎 𝑥(𝑡) for − ∞ < 𝑡 < ∞.  Here, 𝑎 is a finite constant. 6 points. 

 

 

 

 

 

 

(b) Tangent: 𝑦(𝑡) = tan( 𝑥(𝑡) ) for − ∞ < 𝑡 < ∞. 6 points. 

 

 

 

 

 

 

(c) Scale time axis: 𝑦(𝑡) = 𝑥(2 𝑡) for − ∞ < 𝑡 < ∞.  6 points. 

 

  



Problem 2. Discrete-Time Convolution. 18 points 

Consider a discrete-time linear time-invariant (LTI) 

system with impulse response plotted on the right of 

 ℎ[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] + 𝛿[𝑛 − 3]. 
 

For each of the following input signals,  

i.  give a formula for output signal 𝑦[𝑛]. 2 points each. 

ii. plot the output signal 𝑦[𝑛]. 4 points each. 

 

(a) 𝑥1[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] − 𝛿[𝑛 − 3] 

Here, 𝑥1[𝑛] has four non-zero values. 

 

 

 

 

 

 

 

 

 

 

(b) 𝑥2[𝑛] = (−1)𝑛 𝑢[𝑛] 

Here, 𝑥2[𝑛] is 0 for 𝑛 < 0.  For 𝑛 ≥ 0, 𝑥2[𝑛] 
alternates between 1 and -1 indefinitely. 

 

 

 

 

 

 

 

 

 

 

(c) 𝑥3[𝑛] =  (−1)𝑛 

Here, 𝑥3[𝑛] alternates between 1 and -1 for all 𝑛. 

 

 

 

 

 

 

 

  

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥1[𝑛] 
Give a formula for 𝑦[𝑛] 

Plot 𝑦[𝑛] 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥2[𝑛] 
Give a formula for 𝑦[𝑛] 

Plot 𝑦[𝑛] 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥3[𝑛] 
Give a formula for 𝑦[𝑛] 

Plot 𝑦[𝑛] 



Problem 3. Continuous-Time Filter Design.  16 points 

In power systems, a DC-to-DC converter changes the 

voltage level of a direct current (DC) signal. 

A Buck converter provides high efficiency but produces 

undesirable output ripple and harmonics. The 

frequency plot on the right shows the first 7 harmonics. 

Design a continuous-time linear time-invariant filter to  

• pass frequencies between -0.4 MHz and 0.4 MHz 

• eliminate the fundamental frequency 𝑓0 and all its 

harmonics 

(a) Estimate the fundamental frequency 𝑓0 which is the 

frequency of the peak just below the text “RIPPLE 

LEVEL”.  The answer is somewhere between 0.5 

and 0.75 MHz.  Explain your reasoning.  4 points. 

 

 

 

(b) What is the best description of the frequency selectivity of the continuous-time linear time-invariant 

filter— lowpass, highpass, bandpass, bandstop, allpass, or notch?   Why?   4 points. 

 

 

 

 

(c) Give an equation for the the impulse response of the linear-time invariant (LTI) filter and plot it in 

the continuous-time domain.  4 points. 

 

 

 

 

 

(d) Give an equation for the frequency response of the LTI filter and plot it in the continuous-time 

frequency domain from -5 MHz to 5 MHz.  4 points. 

 

 

 

  

The above plot is from Figure 2 in “Understanding Switching Regulator Output Artifacts Expedites 

Power Supply Design” by Aldrick Limjoco, Analog Devices. 

 

http://www.analog.com/en/analog-dialogue/articles/understanding-switching-reg-output-artifacts.html
http://www.analog.com/en/analog-dialogue/articles/understanding-switching-reg-output-artifacts.html


Problem 4. Discrete-Time Filter Design.  18 points. 

People suffering from tinnitus, or ringing of the ears, hear a tone in their ears even when the environment 

is quiet.  The tone is generally at a fixed frequency in Hz, denoted as fc. 

Filtering music to remove as much as possible of an octave of continuous-time frequencies from f1 to f2 

that contains fc as its center frequency can provide relief of tinnitus symptoms. 

To cover an octave of frequencies, f2 = 2 f1.  With fc = ½ (f1+ f2), we have f1 = (2/3) fc and f2 = (4/3) fc. 

This problem will ask you to design a sixth-order discrete-time linear time-invariant (LTI) infinite 

impulse response (IIR) filter to remove the octave of frequencies.   

The sampling rate is fs where fs > 4 f2. 

(a) What is the best description of the frequency selectivity of the continuous-time linear time-invariant 

filter— lowpass, highpass, bandpass, bandstop, allpass, or notch?   Why?  3 points. 

 

 

(b) Give formulas for discrete-time frequencies 𝜔̂1, 𝜔̂𝑐, and 𝜔̂2 that correspond to continuous-time 

frequencies f1, fc and f2, respectively.  3 points. 

 

 

 

 

 

(c) Give formulas in terms of 𝜔̂1, 𝜔̂𝑐, and 𝜔̂2 for the pole and zero locations for the sixth-order discrete-

time IIR filter which has 6 zeros and 6 poles.  Every positive frequency has a negative frequency 

counterpart.  So, if there is a zero at 𝑧 = 𝑒𝑗 𝜔̂0, there’s also a zero at 𝑧 = 𝑒−𝑗 𝜔̂0.   9 points. 

 

 

 

 

 

 

(d) Draw the pole-zero diagram using the numeric values below.  3 points. 

  

 

 

  

Im(z) 

Re(z) 

f1 =   2000 Hz 

fc =   3000 Hz 

f2 =   4000 Hz 

fs = 16000 Hz 

 



Problem 5.  Continuous-Time Sinusoidal Amplitude Modulation.  16 points.   

Continuous-time sinusoidal amplitude modulation multiplies the input signal 𝑥(𝑡) by a sinusoidal 

signal of fixed frequency 𝜔𝑐 in rad/s to give the output signal 𝑦(𝑡) where 

𝑦(𝑡) = 𝑥(𝑡) cos(𝜔𝑐 𝑡) 

By taking the Fourier transform of both sides, we obtain the Modulation Property: 

𝑌(𝑗 𝜔) =
1

2
 𝑋(𝑗 (𝜔 + 𝜔𝑐)) +

1

2
 𝑋(𝑗 (𝜔 − 𝜔𝑐)) 

The term 
1

2
 𝑋(𝑗 (𝜔 + 𝜔𝑐)) shifts the frequency content of 𝑋(𝑗 𝜔) left in frequency by 𝜔𝑐 and scales the 

amplitude by ½ and the term 
1

2
 𝑋(𝑗 (𝜔 − 𝜔𝑐)) shifts the frequency content of 𝑋(𝑗 𝜔) right in frequency 

by 𝜔𝑐 and scales the amplitude by ½.  Here’s an example using an ideal lowpass spectrum for 𝑋(𝑗 𝜔): 

 

 

 

 

 

 

Please use the above Fourier transforms for 𝑥(𝑡) and 𝑦(𝑡) throughout this problem. 

Mixer #1.  In practice, we apply a lowpass filter (LPF) to enforce 

the lowpass bandwidth of 𝑋(𝑗 𝜔) to be 𝜔1 and a bandpass filter 

(BPF) to enforce the bandpass bandwidth of 𝑌(𝑗 𝜔) to be 2𝜔1 

centered at 𝜔𝑐, as plotted above.  Note that 𝜔𝑐 = 2 𝜋 𝑓𝑐 . 

 

Mixer #2.  Mixer #1 can be simplified by replacing the analog 

multiplier and cosine generator with a sampling block operating at 

sampling rate fs.  We keep the LPF and BPF filters the same. 

 

Assume all the LPF and BPF filters are ideal filters. 

(a) Plot 𝑉(𝑗 𝜔).   4 points. 

 

 

 

(b) Plot 𝑆(𝑗 𝜔).  6 points. 

 

 

 

 

(c) Give formulas that describe all the possible values for the sampling rate fs so that the mixer #2 

implements sinusoidal amplitude modulation.  6 points.  



Problem 6. Discrete-Time Mystery Systems.  14 points. 

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 8000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 8000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

8000 Hz

10 𝑠
= 800 Hz2.  Sampling rate 𝑓𝑠 is 16000 Hz. 

In part (a) and (b) below, identify the unknown system as one of the following with justification: 

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies 

2. pointwise nonlinearity – give the integer exponent k to produce the output 𝑦[𝑛] = 𝑥𝑘[𝑛] 

 

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  7 points. 

 

 

 

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  7 points. 

 


